An engineered probiotic for the inhibition of Salmonella via tetrathionate-induced production of microcin H47

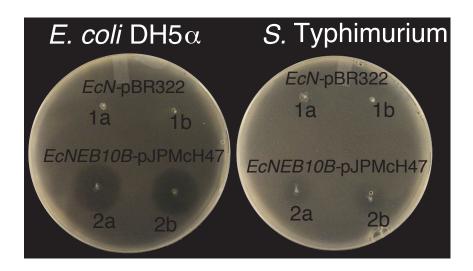
Supplementary Information

Authors: Jacob D. Palmer¹, Emma Piattelli², Beth A. McCormick^{3,4}, Mark W. Silby^{2,5}, Christopher J. Brigham^{1,5}, Vanni Bucci^{2,4,*}

Author affiliation: ¹Department of Bioengineering, University of Massachusetts Dartmouth. ²Department of Biology, University of Massachusetts Dartmouth. ³MaPS, University of Massachusetts Medical School. ⁴UMass Center for Microbiome Research. ⁵Umass Dartmouth Probiotic Discovery, Engineering and Manufacturing Center.

Corresponding author: Vanni Bucci

Contact: Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport


Road, N. Dartmouth, MA 02747

Phone: 508-999-8219

Email: vbucci@umassd.edu

Table of Contents:

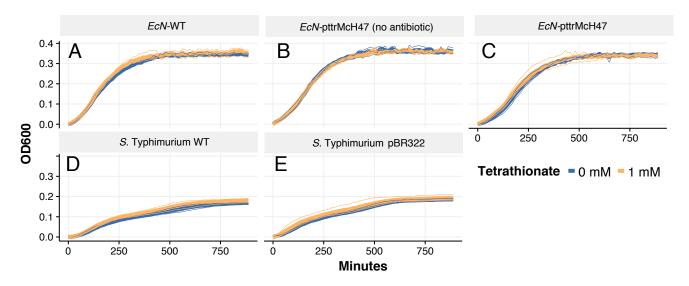

Figure S1: Comparison of <i>E. coli</i> Nissle 1917 pBR322 and <i>E. coli</i> NEB10β harboring the I rhamnose dependent microcin H47 production plasmid (pJPMcH47) in inhibiting <i>E. col</i> strain DH5α and <i>S.</i> Typhimurium
Figure S2: Comparison of <i>E. coli</i> Nissle 1917 pBR322 and <i>E. coli</i> Nissle 1917 pJPMcH47 in inhibiting <i>E. coli</i> strain DH5α and <i>S.</i> Typhimurium in presence and absence of 0.2mM 2,2' dipyridyl
Figure S3: Growth curves in LB media under anaerobic conditions with 0.2mM 2,2'-dipyridy

Figure S1: Comparison of *E. coli* Nissle 1917 pBR322 and *E. coli* NEB10β harboring the l-rhamnose dependent microcin H47 production plasmid (pJPMcH47) in inhibiting *E. coli* strain DH5 α (left) and *S.* Typhimurium (right). This experiment demonstrates MccH47-based inhibition without chromosomal *mch* genes.

Figure S2: Comparison of $E.\ coli$ Nissle 1917 pBR322 and $E.\ coli$ Nissle 1917 pJPMcH47 in inhibiting $E.\ coli$ strain DH5 α (left) and $S.\ Typhimurium$ (right) in presence (D+ top) and absence (D- bottom) of 0.2mM 2,2'-dipyridyl. This experiment demonstrates that iron-limitation is required for maximum MccH47 inhibition. Interestingly, against in not iron-limiting conditions $E.\ coli$ Nissle 1917 inhibits both strains likely through some other not MccH47-related mechanism.

Figure S3: Growth curves in LB media under anaerobic conditions with 0.2mM 2,2'-dipyridyl for (A) *E. coli* Nissle 1917 (*EcN*) WT, (B) *EcN* pttrMcH47 without carbenicillin and (C) *EcN* pttrMcH47 with 100μ g/mL carbenicillin, (D) *S.* Tyhphimurium WT and (E) *S.* Tyhphimurium pBR322 with 100μ g/mL carbenicillin. No significant difference in growth dynamics (maximum growth rate) was observed between 0mM and 1mM potassium tetrathionate. Maximum growth rate was estimated using the R package "grofit" and fitting a spline model to the data.